Abstract
The microtubule cytoskeleton is essential for various biological processes such as the intracellular distribution of molecules and organelles, cell morphogenesis, chromosome segregation, and specification of the location of contractile ring formation. Distinct cell types contain microtubules with different extents of stability. For example, microtubules in neurons are highly stabilized to support organelle (or vesicular) transport over large distances, and microtubules in motile cells are more dynamic. In some cases, such as the mitotic spindle, both dynamic and stable microtubules coexist. Alteration of microtubule stability is connected to disease states, making understanding microtubule stability an important area of research. Methods to measure microtubule stability in mammalian cells are described here. Together, these approaches allow microtubule stability to be measured qualitatively or semiquantitatively following staining for post-translational modifications of tubulin or treating cells with microtubule destabilizing agents such as nocodazole. Microtubule stability can also be measured quantitatively by performing fluorescence recovery after photobleaching or fluorescence photoactivation of tubulin in live cells. These methods should be helpful for those seeking to understand microtubule dynamics and stabilization. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Fixing and staining cells for tubulin post-translational modifications Basic Protocol 2: Evaluating microtubule stability following treatment with nocodazole in live or fixed cells Basic Protocol 3: Measurement of microtubule dynamic turnover by quantification of fluorescence recovery after photobleaching Basic Protocol 4: Measurement of microtubule dynamic turnover by quantification of dissipation of fluorescence after photoactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.