Abstract
Here we describe the application of a highly multiplexed proteomic assay, called HIT (high-throughput immunophenotyping using transcription), to analyze human mast cell surface antigens at rest and during stimulation. HIT allows analysis of up to 100 analytes, including surface antigens and intracellular phosphoproteins, transcription factors, and cytokines, in a single experiment. Briefly, anti-mouse monovalent Fab fragments are covalently conjugated with barcoded oligonucleotides to generate a panel of conjugates. The oligonucleotide-Fab fragment conjugates are bound to monoclonal primary antibodies, creating a cocktail of up to 48 unique barcoded primary antibodies. As few as 100,000 mast cells are stained with the cocktail and the barcodes of the bound primary antibodies are amplified by in vitro transcription with fluorescently labeled NTPs. The resulting barcoded transcripts are quantified using a microarray spotted with oligonucleotides that are complementary to the barcoded transcripts. Differences in levels of the barcoded transcripts correlate well with actual protein levels and are capable of detecting stimulation-dependent changes in protein levels. HIT is an invaluable, broad-spectrum approach for characterizing mast cell surface antigens, signaling molecules, transcription factors, and cytokines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.