Abstract

Planar lithographed quasioptical mixers can profit from the use of integrated tuning elements to improve the coupling between the antenna and the SIS mixer junctions. We have used a Fourier transform spectrometer with an Hg-arc lamp source as an RF sweeper to measure the frequency response of such integrated tuning elements. The SIS junction connected to the tuning element served as the direct detector for the spectrometer. This relatively quick, easy experiment can give enough information over a broad range of millimeter and submillimeter wavelengths to test both design concepts and success in fabrication. One type of tuning element, an inductive wire connected in parallel with a series array of 5 SIS junctions across the terminals of a bow-tie antenna, shows a resonant response peak at 100 GHz with a 30% bandwidth. This result is in excellent agreement with theoretical calculations based on a simple L-C circuit. It also agrees very well with the RF frequency dependence of the mixer gain measured using the same structure. The other type of tuning element, an open-circuited stub connected in parallel with a single SIS junction across the terminals of a bow-tie antenna, exhibits multiple resonances at 110, 220, and 336 GHz, with bandwidths of 9–15 GHz. This result is in good agreement with theoretical calculations based on an open-circuited stub with small loss and small dispersion. The position and the bandwidth of the resonance at 110 GHz also agrees with the RF frequency dependence of the mixer gain measured using similar structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call