Abstract

Graphene is a promising material for applications in aqueous electrolyte environments. To explore the impact of such environments on graphene's electrical properties, we performed Hall bar measurements on electrolyte-gated graphene. Assuming a Drude model, we find that the room temperature carrier mobility in water-gated, SiO2-supported graphene reaches 7000 cm2/Vs, comparable to the best dry SiO2-supported graphene devices. Our results show that the electrical performance of graphene is robust, even in the presence of dissolved ions that introduce an additional mechanism for Coulomb scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call