Abstract
225Ac is a valuable medical radionuclide for targeted α therapy, but 227Ac is an undesirable byproduct of an accelerator-based synthesis method under investigation. Sufficient detector sensitivity is critical for quantifying the trace impurity of 227Ac, with the 227Ac/225Ac activity ratio predicted to be approximately 0.15% by end-of-bombardment (EOB). Superconducting transition edge sensor (TES) microcalorimeters offer high resolution energy spectroscopy using the normal-to-superconducting phase transition to measure small changes in temperature. By embedding 225Ac production samples in a gold foil thermally coupled to a TES microcalorimeter we can measure the decay energies of the radionuclides embedded with high resolution and 100% detection efficiency. This technique, known as decay energy spectroscopy (DES), collapses several peaks from α decays into single Q-value peaks. In practice there are more complex factors in the interpretation of data using DES, which we will discuss herein. Using this technique we measured the EOB 227Ac impurity to be (0.142 ± 0.005)% for a single production sample. This demonstration has shown that DES is a useful tool for quantitative measurements of complicated spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.