Abstract

The uranium-molybdenum (UMo) alloy dispersed in an AlSi matrix has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. In this paper, two irradiated samples containing 53.9 vol% U-7wt% Mo fuel particles dispersed in an Al-2wt% Si matrix were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Measurements revealed three distinct fission gas release events for the samples from 400 to 700 °C, as well as a number of minor fission gas releases below and above this temperature range. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature with exceptional agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.