Abstract

Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic $$ep$$ scattering at HERA are presented as a function of the Feynman variable $$x_F$$ and of the centre-of-mass energy of the virtual photon-proton system $$W$$ . The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $$131~\text {pb}^{-1}$$ . The measurement is restricted to photons and neutrons in the pseudorapidity range $$\eta >7.9$$ and covers the range of negative four momentum transfer squared at the positron vertex $$6<Q^2<100$$ GeV $$^2$$ , of inelasticity $$0.05<y<0.6$$ and of $$70<W<245~$$ GeV. To test the Feynman scaling hypothesis the $$W$$ dependence of the $$x_F$$ dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

Highlights

  • 1 Introduction a e-mail: daum@mail.desy.de b Supported by the Bundesministerium für Bildung und Forschung, FRG, under contract numbers 05H09GUF, 05H09VHC, 05H09VHF, 05H16PEA c Supported by the UK Science and Technology Facilities Council, and formerly by the UK Particle Physics and Astronomy Research

  • These analyses have demonstrated that models of deepinelastic scattering (DIS) are able to reproduce the forward baryon measurements if contributions from different production mechanisms are considered, such as string fragmentation, pion exchange, diffractive dissociation and elastic scattering of the proton [6,7]

  • Within uncertainties the W dependence of the cross section is independent of the presence of a forward neutron or a forward photon, as predicted by the limiting fragmentation hypothesis [9,10]

Read more

Summary

Introduction

1 Introduction a e-mail: daum@mail.desy.de b Supported by the Bundesministerium für Bildung und Forschung, FRG, under contract numbers 05H09GUF, 05H09VHC, 05H09VHF, 05H16PEA c Supported by the UK Science and Technology Facilities Council, and formerly by the UK Particle Physics and Astronomy Research. The H1 and ZEUS experiments at the ep collider HERA have studied the production of forward baryons (protons and neutrons) and photons, which carry a large fraction of the longitudinal momentum of the incoming proton [3,4,5,6,7,8]. These analyses have demonstrated that models of deepinelastic scattering (DIS) are able to reproduce the forward baryon measurements if contributions from different production mechanisms are considered, such as string fragmentation, pion exchange, diffractive dissociation and elastic scattering of the proton [6,7]. The measurements confirm the hypothesis of limiting fragmentation [9,10], according to which, in the high-energy limit, the cross section for the inclusive production of particles in the target fragmentation region is independent of the incident projectile energy

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.