Abstract
Online continuous measurement of the cross-sectional velocity distribution of pneumatically conveyed solids in a square-shaped pipe is desirable in monitoring and optimizing circulating fluidized beds, coal-fired power plants and exhaust pipes. Due to the limitation of non-invasive electrostatic sensors in spatial sensitivity, it is difficult to accurately measure the velocity of particles in large diameter pipes. In this paper, a novel approach is presented for the measurement of cross-sectional particle velocity distribution in a square-shaped pipe using sensors and Gaussian process regression (GPR). The electrostatic sensor includes twelve pairs of strip-shaped electrodes. Experimental tests were conducted on a laboratory test rig to measure the cross-sectional particle velocities in a vertical square pipe under various experimental conditions. The GPR model is developed to infer the relationship between the input variables of velocities and the cross-sectional velocity distribution of particles. Results obtained suggest that the electrostatic sensor in conjunction with the GPR model is a feasible approach to obtain the cross-sectional velocity distribution of pneumatically conveyed particles in a square-shaped pipe.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have