Abstract

We experimentally estimate a reduced electric field (<inline-formula> <tex-math notation="LaTeX">${E}/{N}{)}$ </tex-math></inline-formula> of Hermstein&#x2019;s glow corona discharge from <inline-formula> <tex-math notation="LaTeX">$\text{N}_{{2}}$ </tex-math></inline-formula> intensity ratio: the intensity of the first positive system band (3, 1) [FPS(3, 1)] and the intensity of second positive system band (0, 0) [SPS(0, 0)] are used. The intensity ratio [FPS(3, 1)<inline-formula> <tex-math notation="LaTeX">$/$ </tex-math></inline-formula>SPS(0, 0)] has the relation with the <inline-formula> <tex-math notation="LaTeX">${E}/{N}$ </tex-math></inline-formula>. First, we experimentally clarify the relationship between FPS(3, 1)<inline-formula> <tex-math notation="LaTeX">$/$ </tex-math></inline-formula>SPS(0, 0) and <inline-formula> <tex-math notation="LaTeX">$\text {E}/\text {N}$ </tex-math></inline-formula> at atmospheric pressure. This relationship is acquired by generating the uniform light ionized emission in the parallel-plane gap with the YAG laser and measuring the intensity ratio of FPS(3, 1)/SPS (0, 0) in the range of <inline-formula> <tex-math notation="LaTeX">${E}/{N} =83.9\,\,\times \,\,10^{-{21}}$ </tex-math></inline-formula>&#x2013;95.9 <inline-formula> <tex-math notation="LaTeX">$\times \,\,10^{-{21}}$ </tex-math></inline-formula> Vm<sup>2</sup>. This relationship is applied to Hermstein&#x2019;s glow corona discharge at atmospheric pressure. As a result, the <inline-formula> <tex-math notation="LaTeX">${E}/{N}$ </tex-math></inline-formula> of Hermstein&#x2019;s glow corona discharge is acquired in the range of <inline-formula> <tex-math notation="LaTeX">${E}/{N} =117.4\,\,\times \,\,10^{-{21}}$ </tex-math></inline-formula>&#x2013;125.1 <inline-formula> <tex-math notation="LaTeX">$\times \,\,10^{-{21}}$ </tex-math></inline-formula> Vm<sup>2</sup>. We find the transition of the corona stabilization effect from the discharge occurrence to breakdown by measuring the <inline-formula> <tex-math notation="LaTeX">${E}/{N}$ </tex-math></inline-formula>. This work also considers the gas temperature rise of discharge. Considering the gas temperature rise of discharge has led to the universal method of acquiring the <inline-formula> <tex-math notation="LaTeX">${E}/{N}$ </tex-math></inline-formula> of discharge from the intensity ratio of FPS(3, 1)/SPS(0, 0).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call