Abstract

This paper assesses the accuracy of fatigue crack growth (FCG) predictions for high-strength aluminum samples containing residual stress (RS) and complex two-dimensional cracks subjected to constant amplitude load. FCG predictions use linear-elastic, multi-point fracture mechanics. A first prediction includes RS estimated by the model described in Part 1; a second prediction includes RS measured by the contour method. FCG test data show a significant influence of RS. Ignoring the RS results in a +60% error in predicted FCG life (non-conservative). Including RS improves predictions of crack growth significantly (errors better than +26% (estimated RS) and −14% (measured RS)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.