Abstract

We study the detection of continuous-variable entanglement, for which most of the existing methods designed so far require a full specification of the devices, and we present protocols for entanglement detection in a scenario where the measurement devices are completely uncharacterized. We first generalize, to the continuous variable regime, the seminal results by Buscemi [Phys. Rev. Lett. 108, 200401 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.200401] and Branciard etal. [Phys. Rev. Lett. 110, 060405 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.060405], showing that all entangled states can be detected in this scenario. Most importantly, we then describe a practical protocol that allows for the measurement-device-independent certification of entanglement of all two-mode entangled Gaussian states. This protocol is feasible with current technology as it makes use only of standard optical setups such as coherent states and homodyne measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.