Abstract
We present an uncertainty-relation-type quantum benchmark for continuous-variable (CV) quantum channels that works with an input ensemble of Gaussian-distributed coherent states and homodyne measurements. It determines an optimal trade-off relation between canonical quadrature noises that is unbeatable by entanglement breaking channels and refines the notion of two quantum duties introduced in the original papers of CV quantum teleportation. This benchmark can verify the quantum-domain performance for all one-mode Gaussian channels. We also address the case of stochastic channels and the effect of asymmetric gains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.