Abstract
Abstract This article presents measurement circuits and a test board developed for the experimental evaluation of prototype chip samples of the Fully Differential Difference Amplifier (FDDA). The Device Under Test (DUT) is an ultra low-voltage, high performance integrated FDDA designed and fabricated in 130nm CMOS technology. The power supply voltage of the FDDA is 400mV. The measurement circuits were implemented on the test board with the fabricated FDDA chip to evaluate its main parameters and properties. In this work, we focus on evaluation of the following parameters: the input offset voltage, the common-mode rejection ratio, and the power supply rejection ratio. The test board was developed and verified. The test board error was measured to be 38.73mV. The offset voltage of the FDDA was −0.66mV. The measured FDDA gain and gain bandwidth were 48dB and 550kHz, respectively. In addition to the measurement board, a graphical user interface was also developed to simplify the control of the device under test during measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.