Abstract

This brief presents a novel compact CMOS Fully Differential Difference Amplifier (FDDA) structure suitable for extremely low-voltage low-power applications. Unlike the conventional FB-DDAs that employ two differential pairs, the proposed structure employs one differential pair of multiple-input bulk-driven MOS transistor (MI-BD MOST) that results in reduced count of current branches and, consequently, of power consumption. The proposed FDDA has the simplest CMOS structure presented in the literature so far. Furthermore, while the voltage supply is 0.5 V and the power consumption is 246.6 nW the circuit enjoys rail-to-rail input common mode range (ICMR), high common mode rejection ratio (CMRR) of 100.3 dB @ DC, power supply rejection ratio (PSRR) of 127.8 dB@ DC, voltage gain of 61.4 dB and gain bandwidth product of 6.98 kHz for 30 pF capacitive load. The total harmonic distortion (THD) is less than 0.08% for 500 mV/1 kHz input sine wave signal. The circuit was designed and simulated in Cadence/Spectre environment using 0.18 µm CMOS process from TSMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.