Abstract

Purpose The purpose of this paper is to investigate measurement and regulation of saturated vapour height level in vapour phase soldering (VPS) chamber based on parallel plate capacitor and retaining a stable saturated vapour level above the boiling fluid, regardless of the quantity and size of assembled components. Design/methodology/approach Development and realisation of capacitance sensor that sensitively senses the maximum height level of saturated vapour above the boiling fluid in the VPS chamber was achieved. Methodology of measurement is based on capacitor change from single air to a parallel plate, filled with two dielectric environments in a stacked configuration: condensed fluid and vapour (air). Findings An easy air plate capacitor immersed in the saturated vapour above the boiling fluid can serve as a parallel plate capacitor owing to the conversion of the air to the parallel plate capacitor. A thin film of fluid between the two capacitor plates corresponds to the height of the saturated vapour, which changes the capacity of the parallel plate capacitor. Originality/value Introducing the capacitive sensor directly into the VPS work space allows to achieve a constant height level of saturated vapour. Based on the capacity change, it is possible to control the heating power. There is a lack of information regarding measurement of stable height of vapour in the industry, and the present article shows how to easily improve the way to regulate the bandwidth of saturated vapour in the VPS process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call