Abstract

A combination of experimental measurements and numerical simulations are used to characterize the mechanical and electrochemical response of thin film amorphous Si electrodes during cyclic lithiation. Parameters extracted from the experiment include the variation of elastic modulus and the flow stress as functions of Li concentration; the strain rate sensitivity; the diffusion coefficient for Li transport in the electrode; the free energy of mixing as a function of Li concentration in the electrode; the exchange current density for the Lithium insertion reaction; as well as reaction rates and diffusion coefficients characterizing the rate of formation of solid-electrolyte interphase layer at the electrode surface. Model predictions are compared with experimental measurements; and the implications for practical Si based electrodes are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.