Abstract

The authors demonstrate the need to address fault latency in highly reliable real-time control computer systems. It is noted that the effectiveness of all known recovery mechanisms is greatly reduced in the presence of multiple latent faults. The presence of multiple latent faults increases the possibility of multiple errors, which could result in coverage failure. The authors present experimental evidence indicating that the duration of fault latency is dependent on workload. A synthetic work generator is used to vary the workload, and a hardware fault injector is applied to inject transient faults of varying durations. This method makes it possible to derive the distribution of fault latency duration. Experimental results obtained from the fault-tolerant multiprocessor at the NASA Airlab are presented and discussed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.