Abstract

Abstract A severe thunderstorm wind gust climatology spanning 2003–09 for the contiguous United States is developed using measured Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS) wind gusts. Archived severe report information from the National Climatic Data Center publication Storm Data and single-site volumetric radar data are used to identify severe wind gust observations [≥50 kt (25.7 m s−1)] associated with thunderstorms and to classify the convective mode of the storms. The measured severe wind gust distribution, comprising only 2% of all severe gusts, is examined with respect to radar-based convective modes. The convective mode scheme presented herein focuses on three primary radar-based storm categories: supercell, quasi-linear convective systems (QLCSs), and disorganized. Measured severe gust frequency revealed distinct spatial patterns, where the high plains received the greatest number of gusts and occurred most often in the late spring and summer months. Severe wind gusts produced by supercells were most frequent over the plains, while those from QLCS gusts were most frequent in the plains and Midwest. Meanwhile, disorganized storms produced most of their severe gusts in the plains and Intermountain West. A reverse spatial distribution signal exists in the location between the maximum measured severe wind gust corridor located over the high plains and the maximum in all severe thunderstorm wind reports from Storm Data, located near and west of the southern Appalachians.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call