Abstract

The gravitational wave signal from a binary neutron star inspiral contains information on the nuclear equation of state. This information is contained in a combination of the tidal polarizability parameters of the two neutron stars and is clearest in the late inspiral, just before merger. We use the recently defined tidal extension of the effective one-body formalism to construct a controlled analytical description of the frequency-domain phasing of neutron star inspirals up to merger. Exploiting this analytical description we find that the tidal polarizability parameters of neutron stars can be measured by the advanced LIGO-Virgo detector network from gravitational wave signals having a reasonable signal-to-noise ratio of $\rho=16$. This measurability result seems to hold for all the nuclear equations of state leading to a maximum mass larger than $1.97M_\odot$. We also propose a promising new way of extracting information on the nuclear equation of state from a coherent analysis of an ensemble of gravitational wave observations of separate binary merger events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.