Abstract

We develop a theory of mean-square random invariant manifolds for mean-square random dynamical systems generated by stochastic differential equations. This theory is applicable to stochastic partial differential equations driven by nonlinear noise. The existence of mean-square random invariant unstable manifolds is proved by the Lyapunov-Perron method based on a backward stochastic differential equation involving the conditional expectation with respect to a filtration. The existence of mean-square random stable invariant sets is also established but the existence of mean-square random stable invariant manifolds remains open.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.