Abstract
This paper first establishes a fundamental mean-square convergence theorem for general one-step numerical approximations of Lévy noise driven stochastic differential equations with non-globally Lipschitz coefficients. Then two novel explicit schemes are designed and their convergence rates are exactly identified via the fundamental theorem. Different from existing works, we do not impose a globally Lipschitz condition on the jump coefficient but formulate appropriate assumptions to allow for its super-linear growth. However, we require that the Lévy measure is finite. New arguments are developed to handle essential difficulties in the convergence analysis, caused by the super-linear growth of the jump coefficient and the fact that higher moment bounds of the Poisson increments $ \int_t^{t+h} \int_Z \,\bar{N}(\mbox{d}s,\mbox{d}z), t \geq 0, h >0 $ contribute to magnitude not more than $ O(h) $. Numerical results are finally reported to confirm the theoretical findings.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have