Abstract

For low–dimensional systems, (i.e. 2D and, to a certain extent, 1D) it is proved that mean–field theory can provide an asymptotic guideline to the phase structure of actual systems. In particular, for attractive pair interactions that are sufficiently “spead out” according to an exponential (Yukawa) potential it is shown that the energy, free energy and, in particular, the block magnetization (as defined on scales that are large compared with the lattice spacing but small compared to the range of the interaction) will only take on values near to those predicted by the associated mean–field theory. While this applies for systems in all dimensions, the significant applications are for d = 2 where it is shown: (a) If the mean–field theory has a discontinuous phase transition featuring the breaking of a discrete symmetry then this sort of transition will occur in the actual system. Prominent examples include the two–dimensional q = 3 state Potts model. (b) If the mean–field theory has a discontinuous transition accompanied by the breaking of a continuous symmetry, the thermodynamic discontinuity is preserved even if the symmetry breaking is forbidden in the actual system. E.g. the two–dimensional O(3) nematic liquid crystal. Further it is demonstrated that mean–field behavior in the vicinity of the magnetic transition for layered Ising and XY systems also occurs in actual layered systems (with spread–out interactions) even if genuine magnetic ordering is precluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call