Abstract
Using the convex functions on Grassmannian manifolds, the authors obtain the interior estimates for the mean curvature flow of higher codimension. Confinable properties of Gauss images under the mean curvature flow have been obtained, which reveal that if the Gauss image of the initial submanifold is contained in a certain sublevel set of the υ-function, then all the Gauss images of the submanifolds under the mean curvature flow are also contained in the same sublevel set of the υ-function. Under such restrictions, curvature estimates in terms of υ-function composed with the Gauss map can be carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.