Abstract

Let $F:\Sigma^n \times [0,T)\to \R^{n+m}$ be a family of compact immersed submanifolds moving by their mean curvature vectors. We show the Gauss maps $\gamma:(\Sigma^n, g_t)\to G(n, m)$ form a harmonic heat flow with respect to the time-dependent induced metric $g_t$. This provides a more systematic approach to investigating higher codimension mean curvature flows. A direct consequence is any convex function on $G(n,m)$ produces a subsolution of the nonlinear heat equation on $(\Sigma, g_t)$. We also show the condition that the image of the Gauss map lies in a totally geodesic submanifold of $G(n, m)$ is preserved by the mean curvature flow. Since the space of Lagrangian subspaces is totally geodesic in G(n,n), this gives an alternative proof that any Lagrangian submanifold remains Lagrangian along the mean curvature flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.