Abstract
Emerging applications such as telemedicine, the tactile Internet or live streaming place high demands on low latency to ensure a satisfactory Quality of Experience (QoE). In these scenarios the use of trees can be particularly interesting to efficiently deliver traffic to groups of users because they further enhance network performance by providing redundancy and fault tolerance, ensuring service continuity when network failure or congestion scenarios occur. Furthermore, if trees are isolated from each other (they do not share common communication elements as links and/or nodes), their benefits are further enhanced since events such as failures or congestion in one tree do not affect others. However, the challenge of computing fully disjoint trees (both link- and node-disjoint) introduces significant mathematical complexity, resulting in longer computation times, which negatively impacts latency-sensitive applications.In this article, we propose a novel algorithm designed to rapidly compute multiple fully (either link- or node-) disjoint trees while maintaining efficiency and scalability, specifically focused on targeting the low-latency requirements of emerging services and applications. The proposed algorithm addresses the complexity of ensuring disjointedness between trees without sacrificing performance. Our solution has been tested in a variety of network environments, including both wired and wireless scenarios.The results showcase that our proposed method is approximately 100 times faster than existing techniques, while achieving a comparable success rate in terms of number of obtained disjoint trees. This significant improvement in computational speed makes our approach highly suitable for the low-latency requirements of next-generation networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.