Abstract
Myo-inositol is a versatile compound and plays a vital role in plant growth and stress tolerance. Previously, we found that exogenous application of myo-inositol enhanced the salinity tolerance in Malus hupehensis Rehd. by enhancing myo-inositol metabolism. In this study, we found that the tonoplast-localized myo-inositol transporter 1 (MdINT1) was involved in myo-inositol accumulation and conferred salinity tolerance in apple. MdINT1 is characterized by the highest transcripts among the four apple INT-like genes and could be induced by salt stress at the transcriptional level. Also, it was shown that myo-inositol level was slightly decreased in the leaves of transgenic apple lines over-expressing MdINT1, but was significantly increased in the leaves and roots of MdINT1 silencing line. Interestingly, overexpression of MdINT1 enhanced salinity tolerance by promoting Na+ and K+ balance, antioxidant activity, and accumulation of osmoprotectants in transgenic apple lines. In contrast, under salinity conditions, the MdINT1-mediated protective roles in the antioxidant activity, homeostasis of ions and osmosis were compromised, which in turn increased the risk of salt intolerance in the MdINT1 silencing line.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have