Abstract

MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.