Abstract

Depth completion aims to recover the dense depth map from sparse depth data and RGB image respectively. However, due to the huge difference between the multi-modal signal input, vanilla convolutional neural network and simple fusion strategy cannot extract features from sparse data and aggregate multi-modal information effectively. To tackle this problem, we design a novel network architecture that takes full advantage of multi-modal features for depth completion. An effective Pre-completion algorithm is first put forward to increase the density of the input depth map and to provide distribution priors. Moreover, to effectively fuse the image features and the depth features, we propose a multi-modal deep aggregation block that consists of multiple connection and aggregation pathways for deeper fusion. Furthermore, based on the intuition that semantic image features are beneficial for accurate contour, we introduce the deformable guided fusion layer to guide the generation of the dense depth map. The resulting architecture, called MDANet, outperforms all the stateof-the-art methods on the popular KITTI Depth Completion Benchmark, meanwhile with fewer parameters than recent methods. The code of this work will be available at https://github.com/USTC-Keyanjie/MDANet_ICRA2021.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.