Abstract

The depth completion task aims to generate a dense depth map from a sparse depth map and the corresponding RGB image. As a data preprocessing task, obtaining denser depth maps without affecting the real-time performance of downstream tasks is the challenge. In this paper, we propose a lightweight depth completion network based on secondary guidance and spatial fusion named SGSNet. We design the image feature extraction module to better extract features from different scales between and within layers in parallel and to generate guidance features. Then, SGSNet uses the secondary guidance to complete the depth completion. The first guidance uses the lightweight guidance module to quickly guide LiDAR feature extraction with the texture features of RGB images. The second guidance uses the depth information completion module for sparse depth map feature completion and inputs it into the DA-CSPN++ module to complete the dense depth map re-guidance. By using a lightweight bootstrap module, the overall network runs ten times faster than the baseline. The overall network is relatively lightweight, up to thirty frames, which is sufficient to meet the speed needs of large SLAM and three-dimensional reconstruction for sensor data extraction. At the time of submission, the accuracy of the algorithm in SGSNet ranked first in the KITTI ranking of lightweight depth completion methods. It was 37.5% faster than the top published algorithms in the rank and was second in the full ranking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.