Abstract

Maize has a long history of cultivation and is renowned for its high yield, superior quality, and adaptability. Currently, maize holds a significant position in grain cultivation and occupies a significant place in the agricultural structure. However, maize is susceptible to various diseases during its growth process, which can have a significant impact on the quality and yield. Traditional machine learning is heavily reliant on feature extraction, whereas deep learning has demonstrated notable success in image recognition for computer vision.The use of bloated models and the resulting wastage of computational resources represent significant challenges. The paper proposes a lightweight model, MC-ShuffleNetV2 (Mish + Convolutional Block Attention Module + ShuffleNetV2), to meet the practical needs of convolutional neural networks in maize disease image recognition. The model has designed with a focus on network lightweighting and accurate feature extraction. The model was constructed upon the foundation of the high-performance ShuffleNetV2 1 × network. The Convolutional Block Attention Module was integrated into the network architecture to enhance the model’s adaptive expressiveness. The depthwise separable convolution kernel of the depth-separable module was modified from a 3 × 3 kernel to a 5 × 5 kernel. This modification was implemented with the objective of expanding the image receptive field and extracting more detailed features of the image. It was necessary to modify the activation function in each stage for Mish. The model was compressed through the application of pruning operations. In the maize disease dataset test, the accuracy of the test set recognition accuracy of the network model constructed in this paper reaches 99.86 %, the model parameters are only 873,936, and the FLOPs (Floating-point Operations) are only 1,751,286. Compared with LeNet, AlexNet, MobileNetV2, and EfficientNetV2 models, the MC-ShufflenetV2 model’s recognition ability and size have obvious advantages, and it is more conducive to the actual deployment of the agricultural mobile terminal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.