Abstract
We study Markov chain Monte Carlo (MCMC) algorithms for target distributions defined on matrix spaces. Such an important sampling problem has yet to be analytically explored. We carry out a major step in covering this gap by developing the proper theoretical framework that allows for the identification of ergodicity properties of typical MCMC algorithms, relevant in such a context. Beyond the standard Random-Walk Metropolis (RWM) and preconditioned Crank–Nicolson (pCN), a contribution of this article in the development of a novel algorithm, termed the “Mixed” pCN (MpCN). RWM and pCN are shown not to be geometrically ergodic for an important class of matrix distributions with heavy tails. In contrast, MpCN is robust across targets with different tail behavior and has very good empirical performance within the class of heavy-tailed distributions. Geometric ergodicity for MpCN is not fully proven in this work, as some remaining drift conditions are quite challenging to obtain owing to the complexity of the state space. We do, however, make a lot of progress toward a proof, and show in detail the last steps left for future work. We illustrate the computational performance of the various algorithms through numerical applications, including calibration on real data of a challenging model arising in financial statistics. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.