Abstract

Let $G$ be a finite group, and $\alpha$ a nontrivial character of $G$. The McKay graph $\mathcal{M}(G,\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\chi_1$ to $\chi_2$ if $\chi_2$ is a constituent of $\alpha\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\hbox{diam}\,{\mathcal M}(G,\alpha) \le C\frac{\log |\mathsf{A}_n|}{\log \alpha(1)}$ for all nontrivial irreducible characters $\alpha$ of $\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call