Abstract
BackgroundFusing the CNN and Transformer in the encoder has recently achieved outstanding performance in medical image segmentation. However, two obvious limitations require addressing: (1) The utilization of Transformer leads to heavy parameters, and its intricate structure demands ample data and resources for training, and (2) most previous research had predominantly focused on enhancing the performance of the feature encoder, with little emphasis placed on the design of the feature decoder. MethodsTo this end, we propose a novel MLP-CNN based dual-path complementary (MC-DC) network for medical image segmentation, which replaces the complex Transformer with a cost-effective Multi-Layer Perceptron (MLP). Specifically, a dual-path complementary (DPC) module is designed to effectively fuse multi-level features from MLP and CNN. To respectively reconstruct global and local information, the dual-path decoder is proposed which is mainly composed of cross-scale global feature fusion (CS-GF) module and cross-scale local feature fusion (CS-LF) module. Moreover, we leverage a simple and efficient segmentation mask feature fusion (SMFF) module to merge the segmentation outcomes generated by the dual-path decoder. ResultsComprehensive experiments were performed on three typical medical image segmentation tasks. For skin lesions segmentation, our MC-DC network achieved 91.69% Dice and 9.52mm ASSD on the ISIC2018 dataset. In addition, the 91.6% Dice and 94.4% Dice were respectively obtained on the Kvasir-SEG dataset and CVC-ClinicDB dataset for polyp segmentation. Moreover, we also conducted experiments on the private COVID-DS36 dataset for lung lesion segmentation. Our MC-DC has achieved 87.6% [87.1%, 88.1%], and 92.3% [91.8%, 92.7%] on ground-glass opacity, interstitial infiltration, and lung consolidation, respectively. ConclusionsThe experimental results indicate that the proposed MC-DC network exhibits exceptional generalization capability and surpasses other state-of-the-art methods in higher results and lower computational complexity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.