Abstract

AbstractThis paper revisits the solution of the word problem for ${\it\omega}$-terms interpreted over finite aperiodic semigroups, obtained by J. McCammond. The original proof of correctness of McCammond’s algorithm, based on normal forms for such terms, uses McCammond’s solution of the word problem for certain Burnside semigroups. In this paper, we establish a new, simpler, correctness proof of McCammond’s algorithm, based on properties of certain regular languages associated with the normal forms. This method leads to new applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.