Abstract
There are two strategies for solving Routing and Wavelength Assignment (RWA) in wavelength-routed networks: centralized and distributed. Centralized approaches are appropriate for small networks with light traffic, whereas distributed approaches are suitable for large networks with heavy traffic. Solving RWA problem in distributed algorithms can be generally divided into two phases: routing phase and wavelength assignment phase. Allocating a wavelength over a physical path for a connection request can be performed by one of two major strategies: Backward Reservation Method (BRM) and Forward Reservation Method (FRM). In this work, we assume that every node in the network can be equipped with a number of wavelength converters. Wavelength converters are usually chosen in a free policy. However, we propose a distributed algorithm, called Minimum-Conversion Backward Reservation Method (MC-BRM), that attempts to establish light-paths with minimum number of wavelength conversions. The MC-BRM algorithm can efficiently reduce the number of required wavelength conversions in the network. Besides improving blocking probability, MC-BRM can lead to better fairness in establishing light-paths with different number of hops. Finally, we make the worst case analysis for estimating wavelength conversion usages in individual nodes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have