Abstract

Background and aimThe emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 caused a pandemic of acute respiratory disease, named coronavirus disease 2019 (COVID-19). COVID-19 became one of the most challenging health emergencies, hence the necessity to find different prognostic factors for disease progression, and severity. Membrane bound O-acyltransferase domain containing 7 (MBOAT7) demonstrates anti-inflammatory effects through acting as a fine-tune regulator of the amount of cellular free arachidonic acid. We aimed in this study to evaluate MBOAT7 expression in COVID-19 patients and to correlate it with disease severity and outcomes.MethodsThis case-control study included 56 patients with confirmed SARS-CoV-2 diagnosis and 28 control subjects. Patients were further classified into moderate (n = 28) and severe (n = 28) cases. MBOAT7, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) mRNA levels were evaluated in peripheral blood mononuclear cells (PBMC) samples isolated from patients and control subjects by real time quantitative polymerase chain reaction (RT-qPCR). In addition, circulating MBOAT7 protein levels were assayed by enzyme-linked immunosorbent assay (ELISA).ResultsSignificant lower levels of circulating MBOAT7 mRNA and protein were observed in COVID-19 patients compared to control subjects with severe COVID-19 cases showing significant lower levels compared to moderate cases. Moreover, severe cases showed a significant upregulation of TNF-α and IL-1ß mRNA. MBOAT7 mRNA and protein levels were significantly correlated with inflammatory markers (TNF-α, IL-1ß, C-reactive protein (CRP), and ferritin), liver enzymes, severity, and oxygen saturation levels.ConclusionCOVID-19 is associated with downregulation of MBAOT7, which correlates with disease severity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call