Abstract
We report self-assembled InAs/GaAs quantum dots (QDs) monolithically grown on a compliant transferable silicon nanomembrane. The transferable silicon nanomembrane with flat continuous crystalline silicon layer formed via in situ porous silicon sintering is considered a low-cost seed for heteroepitaxy of free-standing single-crystalline foils for photovoltaic cells. In this paper, the compliant feature of transferable silicon nanomembrane has been exploited for direct growth of high-quality InAs/GaAs (QDs) by molecular beam epitaxy. Bright 1.3 µm room temperature photoluminescence from InAs/GaAs QDs has been obtained. The excellent structural and optical qualities of the obtained InAs/GaAs quantum dots offer great opportunities for realizing a low-cost and large-scale integration of III–V-based optoelectronic device on silicon.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have