Abstract

In this paper, we review our latest developments on the growth and properties of self-assembling quantum dot structures. The self-assembling growth technique which was initially developed using molecular beam epitaxy (MBE), has now been extended to metalorganic chemical vapor deposition (MOCVD). The paper first presents structural results based on atomic force and transmission electron microscopy studies of the quantum dot arrays which were obtained by MBE and MOCVD growth. From the detailed structural analysis we have observed that the formation of coherently strained dots of InAs, InAlAs, and InP dots on various cladding layer surfaces. MBE growth of InAs self-assembled dots has achieved the smallest size distribution, with dots as small as 12nm in diameter. For the MOCVD growth of InP dots we have found that the surface morphology and growth temperature of lower cladding layer growth has a profound influence on island size and density. Recent results on the optical and transport properties of the MBE grown self-assembling dot (SAD) arrays are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.