Abstract
In this paper we show that there exist infinitely many Mazur type manifolds and corks with shadow complexity one among the 4-manifolds constructed from contractible special polyhedra having one true vertex by using the notion of Turaev's shadow. We also find such manifolds among 4-manifolds constructed from Bing's house. Our manifolds with shadow complexity one contain the Mazur manifolds $W^{\pm }(l,k)$ which were studied by Akbulut and Kirby.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have