Abstract

This paper describes the method to construct a maze for which the solution path goes along with the line of a closed one stroke drawn curve. If the crossing of the curve is considered a vertex and the curve between the two crossings (vertices) an edge, the closed curve becomes an Eulerian graph. Since maze does not allow the solution path to intersect itself, the proposed method constructs the path with no crossing; but it goes through every part of the original curve only once. In the process of the path construction, it makes use of the characteristics of Eulerian Graph. The theory was developed and a number of experiments were successfully conducted in some different situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.