Abstract

We consider efficient construction of nonlinear solution paths for general ℓ1-regularization. Unlike the existing methods that incrementally build the solution path through a combination of local linear approximation and recalibration, we propose an efficient global approximation to the whole solution path. With the loss function approximated by a quadratic spline, we show that the solution path can be computed using a generalized Lars algorithm. The proposed methodology avoids high-dimensional numerical optimization and thus provides faster and more stable computation. The methodology also can be easily extended to more general regularization framework. We illustrate such flexibility with several examples, including a generalization of the elastic net and a new method that effectively exploits the so-called “support vectors” in kernel logistic regression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.