Abstract
We investigate the extraction of thermodynamic work by a Maxwell's demon in a multipartite quantum correlated system. We begin by adopting the standard model of a Maxwell's demon as a Turing machine, either in a classical or quantum setup depending on its ability of implementing classical or quantum conditional dynamics, respectively. Then, for an n-partite system (A_1, A_2, ..., A_n), we introduce a protocol of work extraction that bounds the advantage of the quantum demon over its classical counterpart through the amount of multipartite quantum correlation present in the system, as measured by a thermal version of the global quantum discord. This result is illustrated for an arbitrary n-partite pure state of qubits with Schmidt decomposition, where it is shown that the thermal global quantum discord exactly quantifies the quantum advantage. Moreover, we also consider the work extraction via mixed multipartite states, where examples of tight upper bounds can be obtained.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have