Abstract

A finite-heat-capacity source irreversible engine with irreversibility losses of bypass-thermal-leak and heat-resistances is investigated. Comprehensively considering that source heat-capacity is function of its temperature and bypass-thermal-leak and heat-resistance obey generalized form, optimality condition for the maximum work output is obtained by utilizing averaged-optimal-control theory. Detailed mathematical expressions of source heat-capacity, heat-transfer rates and bypass-thermal-leak rate are not prescribed. Generalized result is obtained. Effects of heat-capacity characteristic of the finite-heat-capacity source, heat-resistance models and bypass-thermal-leak on the optimal cycle configuration for maximum work output are analyzed. Finite-heat-capacity source heat-capacity not only has effect on the optimal temperature relationship between working substance and finite-heat-capacity source at high-temperature side of the irreversible engine, but also has effects on optimal profiles of temperatures of finite-heat-capacity source and working substance versus the time. Bypass-thermal-leak affects the optimal temperature relationship between finite-heat-capacity source and working substance at high-temperature side, and the maximum work configurations with and without bypass-thermal-leak are different from each other significantly. The results obtained her ein include those in some previous related literatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call