Abstract

This work is a proof-of-concept realization of a novel technique for rapid volumetric acquisition, reconstruction, and visualization of three-directional (3dir) flow velocities. The technique combines real-time 3dir phase-contrast (PC) flow magnetic resonance imaging (MRI) with real-time cross-sectional volume coverage. It offers a rapid examination without dependence on electrocardiography (ECG) or respiratory gating during a continuous image acquisition at up to 16 fps. Real-time flow MRI utilizes pronounced radial undersampling and a model-based nonlinear inverse reconstruction. Volume coverage is achieved by automatically advancing the slice position of each PC acquisition by a small percentage of the slice thickness. Post-processing involves the calculation of maximum intensity projections along the slice dimension resulting in six direction-selective velocity maps and a maximum speed map. Preliminary applications to healthy subjects at 3 T comprise mapping of the carotid arteries and cranial vessels at 1.0 mm in-plane resolution within 30 s as well as of the aortic arch at 1.6 mm resolution within 20 s. In conclusion, the proposed method for rapid mapping of 3dir flow velocities offers a quick assessment of the vasculature either to provide a first clinical survey or to plan for more detailed studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call