Abstract
1. The relationships between maximum tetanic tension (P0), endurance time, and axonal conduction velocity (CV) were investigated in fast-twitch motor units of the cat flexor carpi radialis (FCR) and medial gastrocnemius (MG) muscles, and in one flexor digitorum longus (FDL) muscle. Endurance time was the length of time that a unit could maintain 25% of its maximum tetanic tension during a sustained contraction. Motor-unit tension was "clamped" at 25% of maximum by altering the stimulation rate of a unit's motor axon through computer feedback control. 2. In individual experiments, including the one investigated FDL muscle, an inverse relation was consistently found between maximum tension and endurance time. Pooled data from the FCR and MG muscles also resulted in significant correlations between maximum tetanic tension and endurance time. 3. Following the force-clamp contraction, some motor units were subjected to the standard fatigue test of Burke and colleagues (6). Motor units were classified as type FR (fast twitch, fatigue resistant) or type FF* (fast twitch, fast fatiguing after the force-clamp contraction). For both type FR and FF* units, maximum tetanic tension and endurance time were found to be inversely related. However, no correlation was found between maximum tetanic tension and fatigue index for type FR units. Only when all type F (FR + FF*) units were considered as a population was there a significant correlation between these two properties. 4. Other investigators have shown that maximum tetanic tension and axonal conduction velocity are highly correlated with the recruitment order of motoneurons (e.g., Refs. 2, 26). Endurance time was found to be more tightly coupled with contraction strength than with conduction velocity. In 12 of 14 experiments, significant Spearman rank correlation coefficients were found between endurance time and tension, whereas significant correlations were found in only 3 of 14 experiments for endurance time and conduction velocity. 5. Pairs of motor units isolated from the same muscle were formed to see if the unit with the smaller tension had the slower conduction velocity and the longer endurance time. Across all muscles, the probability that the unit with the smallest tension had the greatest endurance time was 0.91 (441 of 487 pairs). By contrast, the probability that the least forceful unit of the pair had the slowest conduction velocity was 0.61. 6. In four experiments, pairs of type-identified units were examined. Among FR-FR pairs, the least forceful unit had the greatest endurance time in 88% of 43 pairs. For FF*-FF* pairs, the percentage was somewhat lower, 72% of 29 pairs.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.