Abstract

We analyze scheduling algorithms for multiuser communication systems with users having multiple antennas and linear receivers. When there is no feedback of channel information, we consider a common round robin scheduling algorithm, and derive new exact and high signal-to-noise ratio (SNR) maximum sum-rate results for the maximum ratio combining (MRC) and minimum mean squared error (MMSE) receivers. We also present new analysis of MRC, zero forcing (ZF) and MMSE receivers in the low SNR regime. When there are limited feedback capabilities in the system, we consider a common practical scheduling scheme based on signal-to-interference-and-noise ratio (SINR) feedback at the transmitter. We derive new accurate approximations for the maximum sum-rate, for the cases of MRC, ZF and MMSE receivers. We also derive maximum sum-rate scaling laws, which reveal that the maximum sum-rate of all three linear receivers converge to the same value for a large number of users, but at different rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.