Abstract
This research aims to implement an already developed algorithm to obtain the maximum power transfer of a solar generation field based on a dynamic approach. The study addresses the sizing of the load to be supplied, which is a residential building. On the other hand, it also considers the field sizing as a function of the load and the operating characteristics of the selected inverter. The irradiance data correspond to the hourly record of a station that is part of the network of meteorological stations in Quito. Quito was chosen as the location for this research due to the optimization algorithm’s practical application and the availability of experimental equipment. The demand sizing is based on the regulations of the distribution company with jurisdiction in the area, which makes it a suitable test bed for the algorithm. The optimization algorithm is developed using Python (version 3.9), and the analysis of the behavior of the solar panels is performed by dynamic modeling using the Vensim software (version 10.1.2). Finally, comparative results are presented between using and not using the investigated circuit and algorithm in the photovoltaic system, obtaining an improvement in the generation over a system without the use of these improvements, validating these results by implementing them in a test system, obtaining ranges higher than 10% of the initially generated power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.