Abstract

Grid-connected photovoltaic (PV) system efficiency can be maximized with building demand matching. Computer simulations were used to investigate the priorities of energy efficient measures commonly used in residential and commercial buildings in Thailand that decreased the electricity demand while producing load profiles that matched the unique output profiles from PV systems. Residential and commercial buildings in Thailand were modeled in existing conditions. Then they were made compliant with ASHRAE energy standard requirements which can reduce electricity consumption 16-36% in residential buildings and 8-19% in commercial buildings. With energy efficient design measures, electricity production from PV systems could satisfy the remaining consumption and peak electricity demand reduction could reach up to 70% in residential buildings. Electricity consumption and peak demand reduction in commercial buildings was not high. Reducing lighting power density in residential buildings, using higher glazing efficiency in small offices and using thermal mass in big offices were found to be able to reduce more peak load when electricity output from PV systems were incorporated in the buildings compared with other measures. Energy efficient design measures suitable for different purposes in each building type have been identified. Building owners and electricity utilities can use this information to select the best energy efficient design measures that fit their objectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call