Abstract
Partial shading is an unavoidable complication in the field of photovoltaic (PV) generation. Bypass diodes have become a standard feature of solar cell arrays to improve array performance under partial shading scenarios (PSS). However, the current–voltage and power–voltage characteristic data vary with different shading patterns. In this paper, a shading pattern detection algorithm is first proposed to estimate the number of shaded modules in a PV string. The result is then fed to a field-support vector regression (F-SVR) model, in which the measured features are transferred into a style-free high-dimension space prior to data training. The process of style-normalized transformation enables the features to be independent and identically distributed. Both simulations and experiments are conducted to evaluate the F-SVR model's ability to estimate the voltage at maximum power points. The results show that the proposed maximum power point estimation method can evidently reduce prediction errors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have