Abstract

A path information is defined in connection with the different possible paths of chaotic system moving in its phase space between two cells. On the basis of the assumption that the paths are differentiated by their actions, we show that the maximum path information leads to a path probability distribution as a function of action from which the well known transition probability of Brownian motion can be easily derived. An interesting result is that the most probable paths are just the paths of least action. This suggests that the principle of least action, in a probabilistic situation, is equivalent to the principle of maximization of information or uncertainty associated with the probability distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.